大数据行业图谱之一:底层基础平台公司能做多大?
整个大数据行业可大致分为三层,底层基础平台,中间层通用技术,上层行业应用。接下来,爱分析将按照上述分类,逐步介绍各细分领域的行业现状、未来前景。今天是大数据系列的第一篇——底层基础平台。
底层基础平台主要解决的是数据存储、计算的问题,是整个大数据生态的基石。采集到的数据,首先要能高效、快捷地存起来,才能进行数据分析和数据挖掘。
这一层非常重要,同时也是技术含量最高的一层。以底层技术中明星Hadoop为例,用Hadoop的公司很多,能做Hadoop发行版的公司凤毛麟角。
底层基础平台细分领域里的大数据公司众多,有专注Hadoop发行版的星环科技、红象云腾和天云大数据,有传统数据库厂商人大金仓和南大通用,有研发新型分布式数据库的巨杉数据库,还有唯一来自中国的Apache社区顶级项目Kylin背后公司Kyligence。
这里面最受人关注的Hadoop以及由此衍生的公司,接下来爱分析为您重点阐述国内外Hadoop生态的现状。
Hadoop兴起的原因:便宜才是硬道理
进入新世纪的第一个十年,各大企业都在大力投入IT设备,建设自己的机房,上线各套办公系统。第二个十年,经济下行,传统企业的盈利下降,对IT设备的投入已经不像上个十年那般狂热,大型企业采购IT设备的经费受到控制,开始核算成本,意图在满足需求的情况下,降低投入。
以Hadoop为代表的新底层技术能够兴起,抛开技术原因,最主要的原因是便宜、扩展性强。利用分布式架构,将一些性能一般的机器串联起来,达到与高性能单机同样的效果。随着公司发展,数据量增大,不需要更换全套设备,只需要再增加机器就可以达到目的,省时省力。
分布式架构的技术很多,为什么Hadoop最后胜出?还是因为便宜,用的人多。以微软的Cosmos为例,这套系统本身优于Hadoop,主要是针对大型机房,设计理念很好,上万台机器的机房,拿出几十台做别的事情,来提升系统运营效率。但如果是几十台机器,仍然需要拿出很大一部分来做别的事情,机器使用效率就很低。
实际应用时,用上万台机器的公司少,用几十台机器的公司多,因此Hadoop的应用面更广。用的人多,自然帮助优化架构的人多,社区贡献的人多,技术发展快,渐渐成为主流。
国外Hadoop三驾马车,商业模式各有差异
Hadoop三驾马车,数据源:公司公告,爱分析整理
提到Hadoop,必然要提到国外三家围绕Hadoop技术的公司:Cloudera、Hortonworks和MapR。三家公司都成立时间不长,Cloudera和MapR都是2009年成立,而Hortonworks是2011年从雅虎独立出来。
三家公司都在资本市场上受到追捧。Hortonworks在2014年上市,IPO当天市值接近11亿美金;Cloudera获得英特尔7.4亿美金的投资,估值近50亿美金;MapR最近刚刚获得5000万美金融资,估值也超过10亿美金。
Hadoop技术是开源的,为什么还有公司会提供Hadoop相关服务?这是因为开源技术的兼容性和稳定性比较差,同时,企业在实际应用中需要将开源技术和自身系统、产品相连接,这就是Hadoop发行版的市场所在,三家公司利用自己在这领域的技术、经验积累,帮助企业更好地应用Hadoop技术。
尽管三家公司都是提供Hadoop相关服务,但是商业模式区别不小。Cloudera和MapR都研发自己的Hadoop发行版,只不过MapR的技术完全闭源,不会对外开放,而Cloudera的产品分为免费版和企业版,只有企业版的核心组件不对外开放,其他技术均提供给社区。Hortonworks将自己的技术完全贡献给社区,不靠产品获利,靠派驻技术人员到客户现场提供服务盈利。
因为MapR的技术不开源,所以对社区贡献有限,目前对Apache Hadoop社区影响最大的是Cloudera和Hortonworks这两家公司。
国内市场处于跑马圈地阶段,新兴大数据公司刚刚起步
正如开篇所言,尽管近年大数据行业风起云涌,创业公司如雨后春笋般冒出,却少有专注底层基础平台的公司。
星环科技是业内的明星公司,创始团队来自原Intel开发Hadoop发行版的部门,经验丰富。成立三年,星环科技已完成1.55亿人民币的B轮融资,估值超过10亿人民币,目前主要服务金融、电信领域客户。
天云大数据和红象云腾同样在做底层基础平台,都在寻找适合自身的发展路线。天云大数据的业务在向上层迁移,除了提供Hadoop发行版,目前也涉足复杂神经网络等算法技术;红象云腾将业务下沉,基于芯片层提升系统处理数据的效率。
当前,银行等大型企业纷纷喊出“去IOE”(IBM小型机、Oracle数据库、EMC存储设备),尽管国产企业的产品尚不能满足大型企业核心系统的要求,但是必然会有大量新业务的IT系统采用国产品牌,旧有业务面临更新换代也会优先选择国内厂商。
数据库等底层设施不同于上层应用,更换成本较高,客户黏性很大,非万不得已不会进行替换,同时Hadoop这类新技术迭代速度快,需要后期维护。因此,各家公司都在大力开拓市场,跑马圈地。
新兴公司服务客户的方式类似,前期以产品为内核,用项目制的形式帮助企业搭建系统,后期每年收取20%的维护费。各家企业都在降低初装费,意图占据市场,靠后期维护费用收回成本。
巨头环伺的市场,大数据初创公司突围不易
在去IOE的趋势下,中国大型企业都在面临IT设备的更新换代,整个底层基础平台市场潜力巨大。新兴大数据公司利用其技术优势和初创公司的高效决策机制,迅速抢占一些市场份额,占据一席之地不成问题。
这类公司主要服务金融、电信、交通、电力等领域的大型企业,这些领域原本是传统集成商的地盘,因此新兴大数据公司不可避免地将与集成商正面竞争。华为、浪潮、亚信等公司之前主要是为大型企业提供硬件基础设施,近年看到大数据领域的巨大潜力,纷纷成立了大数据部门,为客户提供全套解决方案。
爱分析认为,未来几年在底层基础平台领域诞生一家估值10亿美金的独角兽公司是可以预见的,但是这些大数据公司中出现类似Oracle这样的巨头公司可能性不大,基于以下几点:
第一,产品同质化严重,市场竞争激烈
底层基础平台不同于上层应用,客户需求类似,产品很难体现出差异化优势。各家公司主要比拼产品性能的优劣,这种技术上的差异,新兴公司最初会占据一定优势,随着开源技术的普及,华为等公司会逐步赶上,技术的差距会逐步缩小。
这个市场并非全新市场,华为、浪潮、亚信等公司在这领域盘桓多年,新兴公司发展到一定程度,势必会侵入集成商的地盘。最近这段时间,星环科技和华为竞争非常激烈,价格战打得火热。
第二, 技术迭代更新快,长期保持技术领先不易
Hadoop诞生于2006年,Spark于2009年出现,2013年Hadoop已经发布2.0稳定版本,两种技术从诞生到成熟时间之短,令人震惊。在当今这个技术快速发展的时代,新兴大数据公司一方面要应对市场竞争,另一方面还要保持技术的领先地位,难度不小。
Hadoop等分布式架构颠覆了传统单机架构,很难说未来不会有新技术出现颠覆掉Hadoop。一旦大数据公司赖以生存的根基遭到颠覆,谋求转型势必困难重重,公司大概率会失败。不过目前Apache Hadoop社区运作良好,Hadoop经过这些年的改善优化,性能和稳定性上获得很大提升,Spark等新技术大多都会对接在Hadoop上面。未来几年这方面风险较小,毕竟技术发展到现在,独自造轮子的难度很大。
第三, 产品销售能力逊于传统巨头公司
企业级市场,产品销售能力将成为影响公司发展的重要因素。以Oracle为例,早年与Oracle竞争的Sybase和Informix,其技术实力不逊于Oracle,Informix的技术甚至领先于Oracle。这两家公司最后在竞争中出局,落得被收购的下场,主要是输在市场推广上,市场推广的失利直接影响到公司的技术革新,最后导致衰落。
在这方面,华为等传统巨头公司占据绝对优势,一方面他们与客户有长期合作关系,另一方面销售团队长期服务大型企业,经验丰富。
那么,什么样的公司有机会突围成功,成为中国的Oracle,爱分析认为具备以下几点的公司机会最大。
第一, 开源心态有助于保持技术领先地位
以Hadoop为代表的开源技术正在改变世界,但开源和可持续盈利模式总是存在着一些矛盾,近期RethinkDB公司的倒闭值得警惕,国内专注Hadoop技术的公司效仿国外找到了一条盈利模式,但目前仍然存在一些风险。
公司要不要保持开源的心态,开放自己的技术给更多人使用?对大数据公司而言,技术是核心竞争力之一,特别是对于这些做基础平台的公司,开放技术无疑是削弱自身竞争优势,降低产品的附加值,减少公司的毛利,短期来看,开放技术会对公司的营收造成不良影响。
但是,从公司长远发展来看,完全闭源会增大公司风险,其严重后果远远大于开放技术的影响。大数据公司最担心的是路线图出现偏差,自身技术与时代发展相左,丧失技术上的优势。一旦发生公司的技术发展方向背离整个行业发展方向,需要停止已研发的项目,掉头追赶行业脚步,这对创业公司来说是非常致命的。
如果向开源社区开放自己技术,让更多人了解、研究,有助于自身技术的发展,保证路线图的正确性。同时,不断向开源社区做出贡献,还能提升公司在社区的话语权,进而提升公司在行业的影响力。这也是为什么Cloudera和Hortonworks愿意开放技术,争夺在Hadoop社区的话语权。影响了开源社区,就会影响到整个行业技术发展进程,可以让公司的发展始终保持在正确的轨道中。
第二, 商业拓展与技术研发同等重要
企业服务市场是销售驱动型市场,而非技术驱动型,大数据这个细分领域同样如此。技术实力再强,产品功能再多样,也需要有客户买单才行。有些创业公司只重视研发上的投入,轻视市场推广,公司每年订单少,营收自然不高,团队规模上不去,融资困难,公司发展缓慢。
单纯技术上的优势,在企业级市场并不是绝对影响因素。很多公司在POC阶段都曾遇到过技术标第一,却因为商业谈判阶段不理想而错失订单的事情。特别是现在市场处于跑马圈地阶段,抢占位置比什么都重要,更是需要大力进行商业拓展。一旦市场格局稳定下来,到时候再切入市场难度很大。
另一方面,即使是基础平台技术,也需要在实际应用中进行改进优化,各行各业中应用同样的技术还是有一些差异,在应用过程中才会真正了解企业的痛点,更好地服务企业。在做项目过程中,大数据公司可以积累经验,将这些经验内化成产品的一部分,做出更适合中国企业用户的基础平台产品,筑起公司的壁垒。
第三, 效仿Oracle,建立适合公司的小生态
建立生态这一点并不是适合初创公司,是公司发展到一定程度后需要考虑的。扩大自己合作伙伴的队伍,与其他公司共同开发产品,让其他公司承担一定销售任务,有些时候要比单打独斗更适合企业级市场。
Oracle这样的巨头公司,刚进入中国市场时也遇到不小的阻力。当时采取的做法是与中国本土公司合作,建立围绕Oracle的小生态,借助本土公司的力量敲开中国市场的大门。
做底层基础平台的公司,作为连接硬件和应用的中间层,更需要与其他公司合作。平台上对接的应用越多,越有助于平台产品的推广,开辟新的市场。
底层基础平台篇到这里告一段落,爱分析会持续关注这一领域,不定期更新信息和观点。下一篇将是介绍中间层——通用技术篇,BI与数据可视化、用户行为分析、移动端运营统计、广告监测、日志分析等都会在这篇中介绍,欢迎各位读者继续关注爱分析。
大数据行业图谱之二:前有堵截,后有追兵,通用技术类公司如何突围
从2011年至今,大数据概念火了五年,势头依然不减。从人人都在讲概念,到商业化应用典型案例出现,可以清晰地看到大数据在逐步落地。以Hadoop为代表的底层架构日趋成熟,处理数据的各项技术有了长足的进步,让大数据开始在各个领域发挥价值。
我们认为,大数据产业仍在初级阶段,商用价值仍未完整展现,市场前景一片广阔。一方面,国内企业IT投入占比低于全球平均标准,随着企业对信息化意识逐步提升,整个IT市场的蛋糕有望继续做大。
另一方面,企业客户将大量IT预算投入到云计算等基础设施建设上,随着基础设施逐渐成熟,企业会将更多预算投入到大数据、人工智能上,届时大数据企业将迎来新一波发展浪潮。
大数据技术逐步提升,对大数据产业划分也越来越细致。从基础设施到行业应用,各个赛道都涌现出大量创新公司,有些代表着最新的技术和应用,有些则是借助大数据概念炒作。
如何识别有前景的赛道、找出有价值的公司,成为市场新的关注点,这也是爱分析大数据行业图谱系列报告的主旨所在。
在发掘有价值的赛道之前,首先应该对行业进行划分,从大到小逐步锁定目标。从整个产业生态角度,大数据产业可以分为三层:
在上篇大数据行业图谱(一)中,爱分析介绍了大数据行业中的底层基础平台,本文是大数据系列第二篇——通用技术,主要是基于Hadoop等底层基础平台的处理数据技术,包括数据采集、数据处理、数据分析、数据可视化等。
从数据流转过程来看,底层基础平台主要解决了数据存储问题,而通用技术则解决了从数据采集到数据分析的问题,有些技术只解决其中某一环节,如数据采集、数据可视化,有些则同时覆盖多个环节,如广告监测同时覆盖数据采集、处理和分析。
从数据采集到数据分析,通用技术包罗万象
通用技术涉及到数据处理各个流程,上图中只是列出目前主要赛道。随着业务发展,更加细分的领域也开始冒出创新公司,如Kyligence专注于OLAP层数据分析,但这些细分赛道目前相对较小,单个赛道里面只有一两家成立时间很短的公司,因此尚未列入其中。
在通用技术这个赛道之下,细分领域主要分为两类:一类是传统领域借助大数据焕发新春,大数据技术发展推动这些业务进一步发展,提升处理效率;另一类是随着移动互联网的兴起,为互联网企业客户提供基于移动端数据服务。
文本挖掘主要应用于舆情监控方面,大数据公司收集互联网的各类文本信息,帮助企业更好地进行竞争分析、公关、用户调研等流程,如智慧星光、波森数据、清博大数据等。
网页爬虫技术很早就出现了,早期百度、Google等搜索引擎都在使用。随着大数据概念深入人心,数据价值被企业所重视,爬虫技术有了更加广阔的市场,八爪鱼这类提供爬虫技术的公司发展起来。
广告监测类公司主要服务品牌企业客户,为企业提供广告营销全流程的数据分析,让品牌客户了解其广告投放效率,更好地进行广告优化,这一领域秒针系统、AdMaster、TalkingData是领跑者。
BI商业智能公司与数据可视化公司,将报表等数据以图像等形式呈现,可视化更侧重于数据呈现,给企业客户更加清晰地展示,BI更侧重于人机互动,让业务人员可以更好地在图像上进行业务分析。
BI领域的有永洪科技和帆软,数据可视化领域的海智BDP、海云数据、数字冰雹相对领先。
日志分析在早期主要应用在信息安全领域,随着大数据技术发展,对日志数据处理更加迅速、精细,日志数据的价值被企业客户认可,其应用领域也逐步延展到公司业务领域,如反欺诈等。这个领域有一些传统安全公司在做,新公司主要有日志易和瀚思安信。
移动统计、用户行为分析等领域是随着移动互联网的兴起而得到快速发展的。移动互联网时代,移动端软件如雨后春笋般冒出,掘金者的出现,势必会出现一些为掘金者送水的人。
移动统计和用户行为分析均是为这些互联网公司提供服务,解决这些企业关心的客户数、转化率等问题。TalkingData和友盟+是移动统计领域的佼佼者,用户行为分析领域呈现出GrowingIO、神策数据和诸葛IO三足鼎立之势。
尽管各细分赛道的公司业务相差很大,但通用技术领域还是存在很多行业共性和未来趋势,这些现状和趋势有助于我们去判断通用技术类公司未来发展方向。
行业现状一:大数据概念逐渐落地,各领域在逐步细化
大数据概念兴起时,企业客户最先想到将数据收集存储起来,因此企业客户都在建立自己的数据中心等基础设施。数据存储之后,如何使用这些数据成为企业新的痛点。
数据可视化是让企业客户感受到数据价值的直接体现。但仅仅是可视化呈现是远远不够的,企业客户希望能够挖掘数据内在价值,于是数据分析领域逐步繁荣。
因此,伴随着大数据概念的逐步落地,通用技术领域的公司得以快速发展。同时这一领域逐步细化,衍生出大量专注于某一细分领域的公司。
以数据分析为例,早期主要是网站流量分析,百度统计、CNZZ等。移动互联网兴起之后,TalkingData、友盟等基于移动平台提供日活量等数据统计公司出现。
随着业务的发展,仅仅是用户数据统计已经不能满足企业的需要,企业开始关注用户的行为分析,希望可以进行更加精细化地分析,这时候GrowingIO、神策数据等公司出现。
据不完全统计,国内大数据公司有130多家,而国外大数据公司有7000多家。因此,尽管领域逐步细化,还是存在很多洼地,整个行业发展空间还很大。
行业现状二:提供工具型服务,模式更偏向SaaS
底层基础平台公司,多以项目制服务客户,人力依赖较重。通用技术类公司,更多是提供某一种工具类服务,更容易形成标准化产品,因此可复制性强,人力依赖相对较轻。
目前国内大型企业一般都实行预算制,服务大型企业时,形式上仍然为项目制,但交付时间相对较短,大数据公司仍然可以看做是输出产品而非人力。
因此,通用技术领域公司的业务模式更偏向SaaS,可以用SaaS类企业的核心指标去分析其运营效率。
因为是工具类服务,客单价一般不高,集中在几万至几十万之间,上百万的订单凤毛麟角。国外市场同样如此,Tableau客单价平均在8000美金,Splunk的客单价在5万美金左右。不过,国内大数据公司目前纷纷涉足传统企业级市场,客单价有望逐步提高。
行业现状三:开源社区兴起,互联网巨头入侵
近年,随着开源文化兴起,越来越多的技术开源,很多大数据相关技术的使用门槛逐步降低,如可视化领域的eCharts,日志分析领域的ElasticSearch,这些工具方便IT人员开发相应的数据技术产品。
与此同时,BAT等互联网巨头不断推出免费的大数据技术产品,如百度统计、友盟统计等,完全可以满足企业一般需求。
以上这些因素,使得大数据公司的技术优势逐步降低,仅仅依靠大数据技术已经很难建立起足够坚实的护城河。
垂直技术面临挑战,通用技术平台同样面临巨大冲击。2016年,跟随Google步伐,国内互联网巨头纷纷开放自己的大数据平台,阿里云开放“数加”平台,百度云开放“天算”,BAT已经形成中小企业的服务闭环。对大数据领域的创新公司而言,服务中小互联网企业这条路几乎被封死。
行业现状四:客群转向传统企业,集成商成强劲对手
对企业而言,接受大数据技术需要一段时间。互联网企业对新技术的接受速度,要远远快于传统企业,因此大数据创新公司早期客户多数为互联网企业。但随着业务不断开展,大数据公司发现互联网企业的付费意愿低于传统企业。
一方面,习惯了互联网免费红利后,互联网企业主更倾向于使用免费产品,相比之下,传统企业用户相对保守,对免费产品心存疑虑,付费购买产品的习惯从信息化时代延续至今。
另一方面,大型互联网公司技术实力强,更倾向于内部研发满足业务需要,不愿意使用外界产品,而传统企业更乐意接受外界产品。
基于以上两点,大数据公司将客户群体由线上互联网企业逐步转向传统企业,如TalkingData早期服务移动端企业,后期转向服务金融、地产等传统领域客户。
不过,传统企业服务市场盘踞着各类集成商,这些公司与客户关系非常密切,已形成了强大的行业壁垒,创新型大数据公司切入并不容易。
技术优势和原有客群逐步被蚕食,打开新市场又面临很大竞争。面对这种前有堵截、后有追兵的局面,大数据公司如何突围?
爱分析认为,具备以下特点的大数据公司更容易突围成功。
行业趋势一:业务垂直化,聚焦细分领域
尽管企业客户更希望得到一个整体解决方案,但对大数据公司而言,将业务聚焦在垂直领域更容易发展。
Tableau、Splunk早期都是聚焦可视化、日志分析细分领域,将产品打磨扎实,才向其他领域进行扩展,国内大数据公司应该更加专注一些,将某一领域做实。
专注单一领域,不盲目扩张,也有助于减少竞争,与更多企业合作。想切入传统企业市场,仅凭大数据公司的商务拓展能力远远不够,有些时候需要与集成商进行合作,借助集成商的渠道切入市场。
行业趋势二:向上层应用偏移,做厚利润空间
不管是开源社区,还是互联网巨头开放平台,输出的更多是技术能力,并不能直接解决企业需求。以Hadoop为例,尽管Hadoop社区技术已经相对成熟,但Cloudera这样的公司仍然有很大市场。
通用技术领域同样如此,对企业级客户来说,他们不关心使用什么样的技术,能够解决业务问题才是关键。
对大数据公司而言,继续向底层偏移,强化技术实力这条路会非常艰难,等同于以一己之力对抗整个社区。逐步偏向上层应用,开发具备行业属性的产品才是更好的选择。
这样做更贴近客户需求,客户付费意愿更强,同时客单价更高,利润空间更大。
行业趋势三:对接多方数据源,实现数据互联
通用技术公司在服务客户过程中,会积累大量数据,经过脱敏处理后,这些数据可以用于服务其他客户。
如TalkingData就在服务移动端中小企业过程中,积累了大量移动设备数据,将这些数据用于为线下金融类客户提供包括精准营销在内的多项服务。
目前大数据公司主要是以自身技术服务于客户的第一方数据源,随着业务发展,大数据公司慢慢会形成自己的第三方数据源,可以将第三方数据源与第一方数据源打通,实现数据互联,将大大增强大数据公司的竞争力。
除TalkingData之外,广告监测领域的秒针系统和AdMaster,可视化领域的海云数据,都在积极建立自己的数据库,将技术与数据结合,提供更贴近业务的服务。
广告监测领域机会最大,用户行为分析需要打开更大市场
尽管通用技术领域整体前景广阔,但各细分赛道情况或有不同,广告监测领域机会最大, 网页爬虫、文本挖掘领域机会不大。日志分析、用户行为分析领域的问题是发展空间有限,需要将业务开拓至新行业才有更大的机会。
广告监测领域机会最大,秒针系统、AdMaster占据前端广告曝光市场95%份额,形成双寡头局面,两家都在积极布局后端监测市场。此外,移动端TalkingData将中小企业一网打尽,为中小APP软件提供包括广告监测在内的多项运营服务。
同时,这些广告监测公司已经开始寻找数据变现路径,帮助企业客户建立第一方和第三方DMP,建立更紧密的合作关系。
BI商业智能与数据可视化领域,单纯提供BI与可视化工具,竞争力并不凸显。因为这类开源技术发展很好,开发成本较小,无法建立技术壁垒,需要向上层应用偏移,将技术与行业应用结合,形成业务壁垒。永洪科技、海云数据等公司都在积极对接业务,重点布局公安、电信等行业,加强客户黏性。
日志分析领域同样面临开源技术冲击,业内一类公司采取ElasticSearch技术,基于开源技术开发相应产品,竞争力有限。另一类公司自主研发底层技术,碰到的问题是如何在与开源社区竞争中保持技术领先性。
单纯是日志分析市场,空间有限,但随着物联网的发展,这类公司可将日志数据延伸到机器数据,在物联网领域发挥更大价值。
用户行为分析领域市场仍处于早期阶段,如果只服务于互联网客户,市场空间有限,竞争激烈,加上百度统计、友盟等分析平台,如何让企业付费是最大问题。这领域公司需要积极探索如何将业务转到传统企业级市场,拓宽发展空间。
网页爬虫、文本挖掘领域机会较小,一方面,百度、Google等搜索引擎公司技术积累远超于新兴企业,后者很难形成足够的技术壁垒,另一方面,通过这类技术采集到的数据价值非常有限,很难利用这类数据为传统企业提供价值。
至此,通用技术篇暂时告一段落,爱分析会持续关注该领域,不定期进行公司调研和提供行业洞见。
下一篇,将是大数据应用篇,大数据与垂直行业深度融合后将产生哪些机会?大数据在金融、电信、公安领域的典型应用案例有哪些?都会在应用篇中揭晓,欢迎各位读者持续关注。
大数据行业图谱之三:为什么大数据应用公司这么贵?
2017年,大数据这把火烧了六年,依然没有减弱的征兆。过去一年,话题的热点已经不再是大数据概念和定义,而是集中在大数据的应用。大多数企业老板已经明白什么是大数据,开始关心数据如何与业务结合,提升企业盈利能力。
大数据应用是整个数据产业的核心,也是企业级客户真正愿意为大数据业务买单的原因。大数据并不神秘,企业在大数据上投入与上个时代企业在硬件设备和ERP等软件上投入没有本质区别,都是认为这种投入能帮助它开源节流,解决业务问题。除了数据交易,数据是无法直接给企业贡献利润的,数据的价值在于让企业的主营业务产生更大利润。
数据来源:2016-2021年大数据应用行业深度分析及“十三五”发展规划指导
从全球市场来看,大数据应用占据整个产业的半壁江山。根据Wikibon报告,2016年全球大数据市场规模为452.6亿美金,细分领域中行业解决方案和应用这两类细分市场规模为226.5亿美金。目前国内企业在大数据的投入还主要是硬件层和技术层,应用层投入相对较少,但应用层的潜力无疑是巨大的,未来在单个垂直行业都会是千亿级市场。
根据爱分析对大数据产业的划分,整个产业分为三层,分别是基础平台、通用技术和行业应用。大数据行业图谱系列报告中的前两篇重点介绍了基础平台(大数据行业图谱之一)和通用技术(大数据行业图谱之二),本文是大数据系列第三篇——行业应用,主要想解决以下三个问题:
第一, 大数据在各行各业的应用有哪些?
第二, 大数据应用公司为什么贵?
第三, 哪些大数据公司容易突围?
要么卖数据,要么卖技术
在大数据应用这个细分市场,最大两类玩家是大型互联网企业和大型集成商,他们的实力远远超过市面上这些做大数据应用的初创公司。
大型互联网企业不仅仅是指BAT,还包括TMD(滴滴、今日头条、美团)等公司,这类企业兼具技术实力和数据源,不过这些企业的技术和数据主要服务自身业务,很少对外输出。
大型集成商主要是指华为、浪潮这些传统IT巨头,他们的传统业务是为大型企业提供硬件设备,在这过程中积累了大量数据。当他们服务对象的需求发生变化,增加大数据领域预算时,他们开始转型,积极开展大数据业务。
大型集成商还可以细分成两类,一类是华为这种自身技术实力很强的公司,他们以单兵作战为主;另一类是一些技术实力较弱,以搬箱子为主的集成商,这些公司一般会选择与大数据公司合作,填补其技术短板。
除去上述两类巨无霸,还有两类玩家。一类是传统提供行业解决方案的IT公司转型开展大数据业务,如中奥科技、美林数据等;另一类是新兴大数据公司,如明略数据、昆仑数据等。前者胜在客户关系和行业经验,后者则在技术上具备优势,不过归根结底,两类玩家都是要解决客户在大数据时代遇到的业务问题。
从服务形式上,大数据应用主要有两种形式:输出技术和输出数据。
输出技术的公司主要是基于自身在数据技术的积累,向客户提供全套解决方案,提升企业处理数据的能力,实现业务效率提高。明略数据、百分点主要以这种形式为客户提供服务。
输出数据的公司主要是基于自身在数据源的积累,向客户提供数据产品,弥补企业在数据源方面的不足。TalkingData、集奥聚合、聚合数据是这类大数据公司中的佼佼者。
从解决需求上,大数据公司主要解决客户三方面需求:平台搭建、数据获取和应用创新。这三类需求是存在递进关系的,不同行业信息化程度相差极大,因此主要需求也会有所差异。
企业级客户经过21世纪前十年的IT投入阶段,各业务线的系统基本建成,形成各项业务的数据库。下一步需要做的是,搭建统一的大数据平台,打通内部各业务系统,解决数据孤岛问题,发挥业务数据的价值。
搭建好大数据平台,数据统一管理,内部数据互联基本完成。接下来是要开始逐步对接外部数据,解决外部数据获取的问题,实现更大规模的数据互联。
最后,融合多方数据源,探索数据在不同场景下的应用。
金融、零售、电信、政府是当前主要应用方向
中国存在大量信息洼地,行业信息化发展极不平衡。工业、农业等信息化相对落后的行业,尚需打好根基,先将业务数据采集存储起来,再寻求数据应用。相比之下,金融、零售、电信、政府等领域信息化程度相对较高,出现很多大数据应用案例。
大数据在金融领域的应用主要有以下三类:精准营销,风险控制以及精细化运营。将金融机构的客户打上不同的数据标签,形成个人和企业用户画像,再根据不同业务需求,甄别出目标客户群体。精准营销主要包括个性化营销、存量用户管理、挖掘潜力客户;风险控制包括个人及企业级信用评估、欺诈交易识别;精细化运营包括产品优化、市场和渠道分析、舆情分析等。
大数据在零售领域的应用与金融领域类似,依然围绕着精准营销、渠道管理、产品优化、市场定位等方面。值得注意的是,金融领域主要关注个体数据应用,而零售领域还关注统计数据应用,即大数据市场调查报告,了解消费者喜好,明确产品市场定位。
电信领域,三大运营商占据得天独厚的优势,主要将大数据应用于精细化流量运营、智能客服中心、个性化服务和对外数据服务。因为运营商数据价值度很高,开始对外输出数据,主要提供个人信用数据和位置数据。
随着《大数据发展概要》的发布,政府开始在大数据领域大力投入,除了建设数据交易中心,提供数据流通的合法途径外,政府大数据在交通、电子政务、公共安全等领域应用案例频出。大数据协助公安人员找出嫌疑人员潜在关系,提升破案效率。
大数据无限可能性,提升公司估值
过去两年,大数据概念热炒催生出一个又一个泡泡,IT创业公司纷纷转型成为大数据公司,意图获得高估值。从爱分析发布的中国市场大数据企业估值榜来看,估值超过5亿美金,PS倍数30-40的大数据公司不少。那么,这些大数据公司为什么这么贵?
其实,提供技术服务的大数据公司估值相对合理,PS倍数略高于SaaS公司,但尚处于合理区间。这些公司业务模式类似传统IT厂商和软件公司,同时国外基本有相应的对标公司,公司未来成长路径一目了然。
主要是与数据源相关、提供数据服务的大数据公司估值普遍较高,资本市场非常看重数据源的价值,主要有以下三点:
第一, 国内数据开放程度低
国内数据开放程度远低于美国,这使得电信、政府、BAT等几个重要数据源价值被放大,有机会掌握或者触及这类数据源的大数据公司更容易建立自己的竞争壁垒,因为有些时候数据源的价值远远高于技术。例如,银行对个人客户进行风险甄别时,如果有运营商数据作为佐证,对风控效果的提升非常巨大,而这部分提升只能依赖于数据,技术再强也没用。
第二, 数据应用尚未成熟
短短五六年,大数据已经对各领域产生深远的影响,逐渐颠覆人们的认知。但大数据还处于早期探索阶段,数据价值尚未完全发挥出来,未来大数据在各行各业的应用远远不止当前这些。具备数据源的公司是最有机会挖掘数据新的应用。
第三, 数据服务规模化相对容易
数据服务不同于技术服务,它对人力依赖相对较轻,主要人员投入在数据清洗环节,服务形式更多为API接口,交付上人力投入低。这种业务模式可复制性要强于技术服务,一旦找到适合的应用场景,可以迅速扩展到其他同类别客户。
不过,高估值只是代表高预期,近年独角兽公司翻车的案例并不少,哪些大数据应用公司更容易兑现预期呢?
大数据应用定制程度高,规模化困难
先泼一盆冷水,不论是技术服务还是数据服务,都存在服务定制化属性重,难以形成标准化产品的问题。
本质上,大数据应用公司的业务与传统咨询公司类似,都需要针对客户个性化需求给出解决方案,难以用标准化服务满足大型客户的需求。数据科学家的存在类似于传统咨询顾问,只不过要求更高。
既然业务无法做到快速复制,重点做大型企业客户,提升客单价就成为大数据应用公司的必然选择。
泼完冷水,让我们看看,究竟哪类大数据公司能够成为独角兽?
优质数据源、技术积累、行业标杆客户,终极目标是数据互联
大数据应用的业务链条,包括数据源、数据技术和数据应用。国外大数据公司可以专注于业务链条的一个环节,将一个环节做好就能成长为10亿美金以上的独角兽公司,中国大数据公司如果仅仅做好其中一个环节,业务开展都成问题,发展很容易遇到瓶颈。
一方面,国外初创公司分工明确,多数公司专注于一个细分领域,合作共赢是主流思想。而国内大数据公司都想自己做整条业务线,因此竞争非常激烈。
另一方面,国外中小企业付费意愿明显强于国内,这使得国外细分领域的市场空间远远大于国内,初创公司可以依靠一众小客户做到几亿营收,支撑其上市。国内公司就很难依靠一个细分领域的客户支持其营收增速,必须要扩张其业务线才能有足够成长空间。
总而言之,国内大数据公司要想成长为独角兽企业,难度远大于国外,数据源、数据技术和数据应用三个环节都要有独特竞争力。
第一, 优质数据源。
大多数大数据公司不具备数据源,主要依靠采集其他企业的数据。像TalkingData为APP软件提供广告监测以及数据统计的业务,从而采集到移动设备数据。因此,有机会触及优质数据源对大数据公司非常重要。
从行业来看,银行、电信、政府的数据价值很高,这类用户数据真实性较高,能反映用户实际需求,而互联网数据中记录大量用户无序行为,有价值数据密度较低;从设备来看,移动端的数据价值要大于PC端。因为智能手机的普及使得移动端用户行为数据更加活跃,同时可以追踪用户地理位置。
第二, 技术积累。
单纯依靠数据源并不能构筑竞争壁垒,毕竟这些数据并非大数据公司所有,躺着挣钱的事情是运营商等数据源拥有方。除互联网客户外,大数据公司都很难将企业客户的原始数据提取出来,只能获取数据标签。
因此,大数据公司在数据处理上要有很深的积累,特别是在数据清理环节,去除噪音,保留有价值的数据,这部分工作对人力依赖较重,需要数据科学家去识别有效数据。
第三, 行业标杆客户。
有些时候,服务几个行业标杆客户的价值要远远超过一支数据科学家团队。大数据最终还要是落地,数据与场景应用结合发挥价值,既需要处理数据的技术,又具备足够的行业经验,准确找到业务痛点。
行业标杆客户面对的业务问题一般都会是最前沿、最具参考价值的,服务这类客户会让大数据企业成长,加深对所服务行业的理解,这一点是大数据公司依靠自身无法提升的,这不是技术上的突破,而是经验上的积累。
第四, 数据互联。
经过这几年对大数据的探索,企业和大数据公司都发现,单一数据源价值度有限,集合多渠道数据,实现数据融合能产生更大能量。例如,将电信数据放在银行风控业务场景,提高了欺诈行为识别率。
因此,很多公司都在提供DMP服务,将自己的第三方数据源与企业客户的第一方数据源对接,但实际效果并不理想。
原因主要有以下两点:第一,双方的数据源重合度不高;第二,多账户归一做得不好,解决不了同源跨屏问题。前者是因为数据与应用场景不匹配,后者主要是在技术积累不足,数据清洗不到位。
诚然,数据互联刚刚起步,但能够打通多个重要数据源的公司最有希望成为独角兽。
爱分析是一家专注于创新企业研究和评价的互联网投研平台。读完文章,您有没有什么想聊聊?可以发邮件至lizhe@ifenxi.com或者加微信号 aiyangyudejiji 联系作者。